受群里小伙伴之邀,搞一个分库分表案例,这样让很多没用过分库分表的心里也有个底,不然永远看到的都是网上的各种概念和解决方案性的文章。
需求
由于用户表过于庞大,采取相关SQL优化,还是不能满足,所以现对其进行做分库分表。
数据库:my-sharding
数据库表:t_user
建表语句如下:
DROP TABLE IF EXISTS `t_user`;CREATE TABLE `t_user` ( `id` bigint NOT NULL AUTO_INCREMENT, `user_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL, `age` int NOT NULL, `gender` int NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8;
关于数据库分库分表通常有两种方案:
- 垂直拆分
- 水平拆分
下面我们来演示水平拆分,大致思路:
通过t_user表的id进行hash,然后再和数据库个数进行取模,得出对应数据库。
通过hash值和每个数据库中表的个数进行取模,得出对应表名。
创建数据库和表
加入有2000万条数据,那么为了方便演示,我们就暂定分为五个库,每个数据库对应五个表。
理想状态:2000万/5/4,那么每个数据库分得400万,每个表分得80万。
总之,分库分表后,我们的每一张表的数据库和表都与之前的确实不是一个量级了。
五个数据库:
每个数据库有五张表:
建表语句如下:
DROP TABLE IF EXISTS `t_user_0`;CREATE TABLE `t_user_0` ( `id` bigint NOT NULL AUTO_INCREMENT, `user_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL, `age` int NOT NULL, `gender` int NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8;DROP TABLE IF EXISTS `t_user_1`;CREATE TABLE `t_user_1` ( `id` bigint NOT NULL AUTO_INCREMENT, `user_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL, `age` int NOT NULL, `gender` int NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8;DROP TABLE IF EXISTS `t_user_2`;CREATE TABLE `t_user_2` ( `id` bigint NOT NULL AUTO_INCREMENT, `user_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL, `age` int NOT NULL, `gender` int NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8;DROP TABLE IF EXISTS `t_user_3`;CREATE TABLE `t_user_3` ( `id` bigint NOT NULL AUTO_INCREMENT, `user_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL, `age` int NOT NULL, `gender` int NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=utf8;DROP TABLE IF EXISTS `t_user_4`;CREATE TABLE `t_user_4` ( `id` bigint NOT NULL AUTO_INCREMENT, `user_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL, `age` int NOT NULL, `gender` int NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8;
项目创建
使用技术栈:JDK8+MySQL+Spring Boot +Mybatis +Shardingsphere +Druid
maven 相关依赖:
org.springframework.boot spring-boot-starter-web org.mybatis.spring.boot mybatis-spring-boot-starter 2.1.0 org.mybatis mybatis 3.5.2 mysql mysql-connector-java 8.0.16 runtime com.github.pagehelper pagehelper-spring-boot-starter 1.2.3 org.springframework.boot spring-boot-starter-test test org.apache.shardingsphere sharding-jdbc-spring-boot-starter 4.0.1 com.alibaba druid 1.1.17 com.google.guava guava 29.0-jre
配置文件相关配置如下:
server.port=9002mybatis.mapper-locations=classpath:/mapper/*.xml# mybatis.type-aliases-package=com.neutral.idmapping.dbshard.pojo##### 连接池配置 ######## 过滤器设置(第一个stat很重要,没有的话会监控不到SQL)spring.datasource.druid.filters=stat,wall,log4j2##### WebStatFilter配置 ########启用StatFilterspring.datasource.druid.web-stat-filter.enabled=true#添加过滤规则spring.datasource.druid.web-stat-filter.url-pattern=/*#排除一些不必要的urlspring.datasource.druid.web-stat-filter.exclusions=*.js,*.gif,*.jpg,*.png,*.css,*.ico,/druid/*#开启session统计功能spring.datasource.druid.web-stat-filter.session-stat-enable=true#缺省sessionStatMaxCount是1000个spring.datasource.druid.web-stat-filter.session-stat-max-count=1000#spring.datasource.druid.web-stat-filter.principal-session-name=#spring.datasource.druid.web-stat-filter.principal-cookie-name=#spring.datasource.druid.web-stat-filter.profile-enable=##### StatViewServlet配置 ########启用内置的监控页面spring.datasource.druid.stat-view-servlet.enabled=true#内置监控页面的地址spring.datasource.druid.stat-view-servlet.url-pattern=/druid/*#关闭 Reset All 功能spring.datasource.druid.stat-view-servlet.reset-enable=false#设置登录用户名spring.datasource.druid.stat-view-servlet.login-username=admin#设置登录密码spring.datasource.druid.stat-view-servlet.login-password=adminspring.shardingsphere.props.sql.show=false#数据库名spring.shardingsphere.datasource.names=dp0,dp1,dp2,dp3,dp4#datasourcespring.shardingsphere.datasource.dp0.type=com.alibaba.druid.pool.DruidDataSourcespring.shardingsphere.datasource.dp0.driver-class-name=com.mysql.jdbc.Driverspring.shardingsphere.datasource.dp0.url=jdbc:mysql://localhost:3306/my-sharding_0?useUnicode=true&characterEncoding=utf-8&serverTimeZone=CTT&allowPublicKeyRetrieval=true&serverTimezone=UTCspring.shardingsphere.datasource.dp0.username=rootspring.shardingsphere.datasource.dp0.password=123456 ———-相同的代码部分这里就不贴了——-# 对应 dp1、dp2、dp3、dp4 和上面dp0配置类似,不一样的就是数据库名字不一样# 因为我使用的本地创建多个数据库演示的,这里就没有必要重复累赘了#actual-data-nodes#这里是配置所有的 库.表 的集合#比如我这里配置的意思是 dp0.data_0 , dp0.data_1 ,dp0.data_2 , …#此缩写方式使用了shardingsphere 官方推荐的语法#t_user 逻辑表名 在UserMapper.xml中使用spring.shardingsphere.sharding.tables.t_user.actual-data-nodes=dp$->{0..4}.t_user_$->{0..4}#table#设置了以data中字段id作为分表的标准,这样到时候就会将id作为参数传入到下面配置的我们自定义的分表方法中做具体操spring.shardingsphere.sharding.tables.t_user.table-strategy.standard.sharding-column=idspring.shardingsphere.sharding.tables.t_user.table-strategy.standard.precise-algorithm-class-name=com.tian.shardingdemo.common.TableShardingAlgorithm#database#设置了以data中字段id作为分库的标准,这样到时候就会将id作为参数传入到下面配置的我们自定义的分库方法中做具体操作spring.shardingsphere.sharding.tables.t_user.database-strategy.standard.sharding-column=idspring.shardingsphere.sharding.tables.t_user.database-strategy.standard.precise-algorithm-class-name=com.tian.shardingdemo.common.DbShardingAlgorithm
分库分表的两个分片类:
/** * 分库 */public class DbShardingAlgorithm implements PreciseShardingAlgorithm { private Logger logger = LoggerFactory.getLogger(DbShardingAlgorithm.class); @Override public String doSharding(Collection availableTargetNames, PreciseShardingValue shardingValue) { String databaseName = availableTargetNames.stream().findFirst().get(); for (String dbName : availableTargetNames) { //shardingValue.getValue()就是配置的传入的值 //我们这里选用的是传入sql中的id字段的值 String targetDbName= “dp” + genderToTableSuffix(shardingValue.getValue()); if (dbName.equals(targetDbName)) { //匹配到对应的数据库,比如 dp0 //这个数据库名对应数据源处配置的dp0,dp1,… logger.info(“数据库名=” + dbName); databaseName = dbName; } } return databaseName; } private String genderToTableSuffix(Long value) { //将id字段的值去hash值后去模运算得到分库的数字(就是一种算法而已) int i = Hashing.murmur3_128(1823977).newHasher().putString(String.valueOf(value), Charsets.UTF_8).hash().asInt(); //hash与表个数进行取模 return String.valueOf(Math.abs(i) % 5); }}/** * 分表 */public class TableShardingAlgorithm implements PreciseShardingAlgorithm { private Logger logger = LoggerFactory.getLogger(TableShardingAlgorithm.class); @Override public String doSharding(Collection availableTargetNames, PreciseShardingValue shardingValue) { String table = availableTargetNames.stream().findFirst().get(); String targetName = “t_user_” + genderToTableSuffix(shardingValue.getValue()); for (String tableName : availableTargetNames) { //检查计算出来的表名是否存在 if (tableName.equals(targetName)) { logger.info(“表名= ” + tableName); table = tableName; } } return table; } private String genderToTableSuffix(Long value) { //算出一个hash值 int类型 int i = Hashing.murmur3_128(8947189).newHasher().putString(String.valueOf(value), Charsets.UTF_8).hash().asInt(); //hash与表个数进行取模 return String.valueOf(Math.abs(i) % 5); }}
下面是业务部分代码,先看UserMapper.xml内容:
INSERT INTO t_user (id, user_name,age,gender) VALUES ( #{id},#{userName},#{age},#{gender} ); select * from t_user id = #{id} update t_user `user_name` = #{userName}, gender = #{gender}, age = #{age}, where id=#{id}
UserMapper接口:
import com.tian.shardingdemo.entity.User;import org.apache.ibatis.annotations.Mapper;import org.apache.ibatis.annotations.Param;import org.springframework.stereotype.Repository;@Mapper@Repositorypublic interface UserMapper { User selectUserById(@Param(“id”) Long id); int updateAuthorIfNecessary(User user); int insert(User user);}
为了更好地演示,我这里加入了controller层和service层,这也是大家平常开发套路。
service层代码如下:
public interface IUserService { User selectUserById(Long id); void add(Long id);}@Servicepublic class UserServiceImpl implements IUserService { @Resource private UserMapper userMapper; @Override public User selectUserById(Long id) { return userMapper.selectUserById(id); } @Override public void add(Long id) { User user = new User(); user.setAge(22); user.setGender(1); user.setId(id); user.setUserName(“tian” + id); userMapper.insert(user); }}
controller层代码如下:
@RestController@RequestMappingpublic class UserController { @Resource private IUserService userService; @RequestMapping(value = “/user/{id}”, method = RequestMethod.GET) public User selectUserById(@PathVariable(“id”) Long id) { return userService.selectUserById(id); } @PostMapping(“/add”) public Object add(@RequestBody Map params) { Long id = params.get(“id”); userService.add(id); return “ok”; }}
最后是项目的启动类:
@SpringBootApplication@MapperScan({“com.tian.shardingdemo.mapper”})public class ShardingDemoApplication { public static void main(String[] args) { SpringApplication.run(ShardingDemoApplication.class, args); }}
启动项目,启动成功:
下面我们来演示一下新增数据和查询。
添加数据到数据库中
先来添加数据到数据库中,这里使用的是IDEA中restful工具:
后台日志:
再查看数据库表中:
到此,我们的数据依旧落库,下面我们来演示一下数据查询。
数据查询
浏览器里输入:
http://localhost:9002/user/7
返回数据:
{“id”:7,”userName”:”tian7″,”age”:22,”gender”:1}
后台日志:
从日志和返回结果可以看出,已经为我们正确的选择到对应的数据库和表了,这样,一个分库分表的查询就成功了。
总结
本文没有太多的概念,直接使用案例演示。相关概念性的文章,还有分库分表解决方案的文章,网上一堆堆的,感兴趣可以自行查阅。