一、背景
在工作项目使用多进程、多线程过程中,因争夺资源而造成一种资源竞态,所以需加锁处理。如下图所示,线程A想获取线程B的锁,线程B想获取线程C的锁,线程 C 想获取线程D的锁, 线程D想获取线程A的锁,从而构建了一个资源获取环,当进程或者线程申请的锁处于相互交叉锁住的情况,就会出现死锁,它们将无法继续运行。
死锁的存在是因为有资源获取环的存在,所以只要能检测出资源获取环,就等同于检测出死锁的存在。
二、原理
在不改变项目源代码的情况下,采用图算法来检测环的存在,使用有向图来存储;如线程A获取线程B已占用的锁(表示线程B获取锁成功),则为线程A指向线程B;启动一个线程定时对图进行检测是否有环的存在。
(1)数据结构
//数据/点struct node{uint64 thread_id;//线程IDuint64 lock_id;//锁IDint degress;};//数据和数据结构分开struct vertex{struct node *d;struct vertex *next;};struct graph{struct vertex list[THREAD_MAX];//存储图的所有节点int num;//已经使用了多少个struct node locklist[THREAD_MAX];int lockidx;pthread_mutex_t mutex;//预留:线程安全考虑,在对图修改时加锁};
(2)图的操作
a.创建图节点
//创建图节点struct vertex *create_vertex(struct node *d){struct vertex *tex =(struct vertex*)calloc(1,sizeof(struct vertex));if(tex == NULL) return NULL;tex->d = d;tex->next = NULL;return tex;}
b.查找节点
//查找节点,是否存在int search_vertex(struct node *d){int i;for (i = 0; i num; i++){if (tg->list[i].d->thread_id == d->thread_id){return i;}}
c.添加节点
//添加节点,只是把添加的节点放到list中,还没有确定各节点间的指向,必须通过add_edge添加边来确定void add_vertex(struct node *d){if (search_vertex(d) == -1){tg->list[tg->num].d = d;//添加到list中tg->list[tg->num].next = NULL;tg->num++;//节点数累加}}
d.添加边,指定方向
//添加边,指定方向,谁指向谁void add_edge(struct node *from, struct node *to){add_vertex(from);add_vertex(to);struct vertex *v = &tg->list[search_vertex(from)];while (v->next != NULL){v = v->next;}v->next = create_vertex(to);}
e.检测节点间是否有边
//检测节点from和to间是否有边连接int verifty_edge(struct node *from, struct node *to){if(tg->num == 0) return 0;int idx = search_vertex(from);if(idx == -1) return 0;struct vertex *v = &(tg->list[idx]);while(v != NULL){if(v->d->thread_id == to->thread_id) return 1;v = v->next;}return 0;}
f.删除边
//删除边void remove_edge(struct node *from, struct node *to){int idxi = search_vertex(from);int idxj = search_vertex(to);if(idxi != -1 && idxj !=-1){struct vertex *v = &tg->list[idxi];struct vertex *remove;while(v->next != NULL){if(v->next->d->thread_id == to->thread_id){//找到要删除的节点remove = v->next;v->next = v->next->next;free(remove);break;}v = v->next;}}}
(3)图遍历
本文采用图遍历中最为常用的深度优先搜索进行遍历,代码如下。
//dfs深度遍历int dfs(int idx){struct vertex *v = &tg->list[idx];if(visited[idx] == 1){//有环path[k++] = idx;print_deadlock();deadlock = 1;return 0;}visited[idx] =1;//被遍历到了,赋值为1,保证同一个节点只能遍历一次path[k++] = idx;while(v->next !=NULL){dfs(search_vertex(v->next->d));k–;v = v->next;}return 1;}//遍历图,任意从图的一个节点出发,对每一个节点进行dfs遍历int search_for_cycle(int idx){struct vertex *v = &tg->list[idx];visited[idx] = 1;k = 0;path[k++] = idx;while(v->next != NULL){int i = 0;for (; i num; i++){if(i == idx){continue;}visited[i] = 0;}for(i = 1; i next->d));v = v->next;}}
(4)启动检测
C++后台开发架构师免费学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂
另外还整理一些C++后台开发架构师 相关学习资料,面试题,教学视频,以及学习路线图,免费分享有需要的可以自行添加点击 正在跳转 群文件共享
启动线程定时检测图是否有环,代码如下。
//从第0个节点开始dfsvoid check_dead_lock(){int i = 0;deadlock = 0;for(;i num; i++){if(deadlock == 1) break;search_for_cycle(i);}if(deadlock == 0){printf(“no deadlock”);}}//检测锁线程funcstatic void *thread_func(void *args){while(1){sleep(5);check_dead_lock();}}//启动检测锁线程void start_check(){tg = (struct graph*)malloc(sizeof(struct graph));tg->num = 0;tg->lockidx = 0;pthread_t tid;pthread_create(&tid,NULL,thread_func,NULL);}
(5)钩子hook
为了不改变项目原代码,使用hook在应用程序调用系统加锁、解锁API时进行劫持,使其实际调用的是应用程序定义的加锁、解锁API;再进行加锁、解锁前,我们先去理解3个状态,加锁前、加锁后、解锁后,即:lock_before、lock_after、unlock_after,通过这三个函数与图构建起来,具体实现如下。
//1.没有被其他线程占用,不用处理//2.有被其它线程占用,就要把边构建起来//添加边void lock_before(uint64 thread_id, uint64 lockid){int idx = 0;for(;idx lockidx;idx++){if(tg->locklist[idx].lock_id == lockid){struct node from;from.thread_id = thread_id;add_vertex(&from);struct node to;to.thread_id = tg->locklist[idx].thread_id;tg->locklist[idx].degress++;add_vertex(&to);if(!verifty_edge(&from, &to)){add_edge(&from, &to);//添加边}}}}//1.没有被其它线程占用//先加入一个节点add_edge//2.有被占用//是进不来lock_after的////等unlock_after 释放后//mtx没有主人void lock_after(uint64 threadid, uint64 lockid) {int idx = 0;if(-1 == (idx = search_lock(lockid))){int eidx = search_empty_lock();tg->locklist[eidx].thread_id = threadid;tg->locklist[eidx].lock_id = lockid;inc(&tg->lockidx, 1);}else{struct node from;from.thread_id = threadid;struct node to;to.thread_id = tg->locklist[idx].thread_id;tg->locklist[idx].degress–;if(verifty_edge(&from, &to)){remove_edge(&from, &to);//不在死锁检测的圈里面了,所以删除边}tg->locklist[idx].thread_id = threadid;}}void unlock_after(uint64 threadid, uint64 lockid) {int idx = search_lock(lockid);if(tg->locklist[idx].degress == 0){tg->locklist[idx].thread_id = 0;tg->locklist[idx].lock_id = 0;}}
honk钩子主要实现pthread_mutex_lock、pthread_mutex_unlock的劫持,具体实现如下。
int pthread_mutex_lock(pthread_mutex_t *mutex){pthread_t selfid = pthread_self();lock_before(selfid, (uint64)mutex);pthread_mutex_lock_f(mutex);//执行系统加锁的入口函数lock_after(selfid, (uint64)mutex);}int pthread_mutex_unlock(pthread_mutex_t * mutex){pthread_t selfid = pthread_self();pthread_mutex_unlock_f(mutex);//执行系统解锁的入口函数unlock_after(selfid, (uint64)mutex);}static int init_hook(){pthread_mutex_lock_f = dlsym(RTLD_NEXT,”pthread_mutex_lock”);pthread_mutex_unlock_f = dlsym(RTLD_NEXT,”pthread_mutex_unlock”);}
(6)Demo
//测试样例pthread_mutex_t mtx1 = PTHREAD_MUTEX_INITIALIZER;pthread_mutex_t mtx2 = PTHREAD_MUTEX_INITIALIZER;pthread_mutex_t mtx3 = PTHREAD_MUTEX_INITIALIZER;pthread_mutex_t mtx4 = PTHREAD_MUTEX_INITIALIZER;void *th_func1(void *arg) {pthread_mutex_lock(&mtx1);sleep(1);pthread_mutex_lock(&mtx2); pthread_mutex_unlock(&mtx2);pthread_mutex_unlock(&mtx1);}void *th_func2(void *arg) {pthread_mutex_lock(&mtx2);sleep(1);pthread_mutex_lock(&mtx3);pthread_mutex_unlock(&mtx3);pthread_mutex_unlock(&mtx2);}void *th_func3(void *arg) {pthread_mutex_lock(&mtx3);sleep(1);pthread_mutex_lock(&mtx1);pthread_mutex_unlock(&mtx1);pthread_mutex_unlock(&mtx3);}void *th_func4(void *arg) {pthread_mutex_lock(&mtx2);sleep(1);pthread_mutex_lock(&mtx3);pthread_mutex_unlock(&mtx3);pthread_mutex_unlock(&mtx2);}int main(){init_hook();//初始化hookstart_check();//启动检测死锁线程pthread_t t1,t2,t3,t4;pthread_create(&t1,NULL,th_func1,NULL);pthread_create(&t2,NULL,th_func2,NULL);pthread_create(&t3,NULL,th_func3,NULL);pthread_create(&t4,NULL,th_func4,NULL);pthread_join(t1,NULL);pthread_join(t2,NULL);pthread_join(t3,NULL);pthread_join(t4,NULL);return 0;}
原文地址:死锁检测实现 – MrJuJu – 博客园